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Abstract
A theory of conceptual development must provide an account of the 
innate representational repertoire, must characterize how these initial 
representations differ from the adult state, and must provide an account 
of the processes that transform the initial into mature representations. 
In The Origin of Concepts (Carey 2009), I defend three theses: (1) the 
initial state includes rich conceptual representations, (2) nonetheless, 
there are radical discontinuities between early and later developing 
conceptual systems, (3) Quinean bootstrapping is one learning mecha-
nism that underlies the creation of new representational resources, en-
abling such discontinuity. Here I argue  that the theory of conceptual 
development developed in The Origin of Concepts constrains our theo-
ries of concepts themselves, and addresses two of Fodor’s challenges 
to cognitive science; namely, to show how learning could possibly lead 
to an increase in expressive power and to defeat Mad Dog Nativism, 
the thesis that all concepts lexicalized as mono-morphemic words are 
innate. In response to Fodor, I show that, and how, new primitives in a 
language of thought can be learned, that there are easy routes and hard 
ones to doing so, and that characterizing the learning mechanisms in 
each illuminates how conceptual role partially determines conceptual 
content.
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1 Introduction

The human conceptual repertoire is a unique phenomenon on earth, 
posing a formidable challenge to the disciplines of cognitive science.  
Alone among animals, humans can ponder the causes and cures of 
pancreatic cancer and global warming. How are we to account for 
the human capacity to create concepts such as climate, cancer, 
electron, infinity, galaxy and wisdom? How do such concepts arise, 
both over history and in ontogenesis? Rightly, most attempts to 
provide such an account center on what makes concept attainment 
possible, but the literature on concept development adds a second 
question. Why is concept attainment (sometimes) so easy and what 
(sometimes) makes concept attainment so hard? Easy: some new 
concepts are formed upon first encountering a novel entity or hear-
ing a new word in context (Carey 1978). Hard: others emerge only 
upon years of exposure, often involving concentrated study under 
metaconceptual control, and are not achieved by many humans in 
spite of years of explicit tutoring in school (Carey 2009). Consider-
ing what underlies this difference illuminates both how concepts are 
attained and what concepts are.

A theory of conceptual development must have three components. 
First it must characterize the innate conceptual repertoire—the rep-
resentations that are the input into subsequent learning processes. 
Second, it must describe how the initial stock of representations dif-
fers from the adult conceptual system. Third, it must characterize 
the mechanisms that achieve the transformation of the initial into 
the final state.

The two projects of constructing a theory of concept acquisition 
and constructing a theory of concepts fit within a single intellec-
tual enterprise. Obviously, a theory of concept acquisition must be 
consistent with what concepts are. But the relation between the two 
projects goes both ways, a fact that has played almost no role in the 
psychological literature on concepts (see, for example, the excellent 
reviews in Smith and Medin 1981, and in Murphy 2002). With the 
exception of developmental psychologists, cognitive scientists work-
ing on concepts have mostly abandoned the problem of character-
izing and accounting for the features that enter into their learning 
models, often coding them with dummy variables.
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This was not always so. For example, in theorizing about con-
cepts, the British Empiricists made accounting for acquisition a cen-
tral concern. They, like many modern thinkers, assumed that all 
concept learning begins with a primitive sensory or perceptual vo-
cabulary. That project is doomed by the simple fact that it is impos-
sible to express most concepts in terms of perceptual features (e.g., 
cause, good, seven, gold, dog…). In response, some theorists posit 
a rich stock of innate conceptual primitives, assuming that the adult 
conceptual repertoire can be built from them by conceptual combi-
nation. That is, they assume that the computational primitives that 
structure the adult conceptual repertoire and the innate primitives 
over which hypothesis testing is carried out early in development 
are one and the same set (e.g., Levin and Pinker 1991; Miller 1977; 
Miller and Johnson-Laird 1976). A moment’s reflection shows this 
assumption is also wrong. For example, the definition of gold within 
modern chemistry might be element with atomic number 79. Clearly 
the theoretical primitives element and atom are not innate conceptu-
al features, as they arise in modern chemistry and physics only in the 
18th and 19th centuries, after many episodes of conceptual change. 
(Of course, it is an open question whether element and atom are de-
finable in terms of developmental primitives; there are no proposals 
for possible definitions in terms of innately available primitives). Or 
take the features that determine the prototype structure of animal 
concepts (e.g., bird: flies, lays eggs, has wings, nests in trees, has a 
beak, sings,...). Participants in studies provide just these when asked 
to list the features of birds. Furthermore, overlap in these features 
with others at this grain predicts judged similarity of birds to other 
animals, and overlap in particular values of them (e.g., beak type), as 
well as other features such as color and size, predicts prototypical-
ity within the category of birds. That is, this feature space definitely 
underlies adult prototypicality structure. Prototype learning models 
assume that learning a new concept involves constructing a summary 
representation of a category in terms of such features, and then using 
this summary representation to probabilistically determine category 
membership. But a moment’s reflection shows these models just help 
themselves to features that are not, for the most part, innate primi-
tives—many are no less abstract nor no less theory-laden than the 
concept bird itself.



Susan Carey116

In a recent book (Carey, 2009, The Origin of Concepts, hereafter, 
TOOC), I take on the dual projects of accounting for conceptual de-
velopment and characterizing the nature of human concepts. To-
wards a theory of conceptual development, I defend three theses. 
With respect to the initial state, contrary to historically important 
thinkers such as the British empiricists, Quine, and Piaget, as well 
as many contemporary scientists, the innate stock of primitives is 
not limited to sensory, perceptual or sensory-motor representations. 
Rather, there are also innate conceptual representations, embedded 
in systems of core cognition, with contents such as agent, object, 
goal, cause, and approximately 10. With respect to developmen-
tal change, contrary to continuity theorists such as Fodor (1975), 
Pinker (2007) and many others, there are major discontinuities over 
the course of conceptual development. By ‘discontinuity’ I mean 
qualitative changes in representational structure, in which the later 
emerging system of representation cannot be expressed in terms 
of the conceptual resources available at the earlier time. Concep-
tual development consists of episodes of qualitative change, result-
ing in systems of representation with more expressive power than, 
and sometime incommensurable with, those from which they are 
built. Increases in expressive power and incommensurabilities are 
two types of conceptual discontinuities. With respect to a learning 
mechanism that achieves conceptual discontinuity, I offer Quinian 
bootstrapping.

Toward a theory of concepts that meshes with the picture of con-
ceptual development in TOOC, I support dual factor theory (e.g., 
Block 1986). The two factors are sometimes called ‘wide’ and ‘nar-
row’ content. The wide content of our mental representations is 
partly determined by causal connections between mental symbols, 
on the one hand, and the entities to which they refer. To the extent 
this is so, all current psychological theories of concepts are on the 
wrong track—concepts are not prototypes, exemplar representa-
tions, nor theories of the entities they represent. However, contrary 
to philosophical views that deny that meanings are determined in any 
way by what’s in the head (e.g., Dretske 1981, Fodor 1998, Kripke 
1972/1980, Putnam 1975), TOOC argues that some aspects of infer-
ential role are content determining (narrow content). The challenge 
for psychologists is saying what aspects of mental representation of 
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entities we can think about partly determine the meaning of con-
cepts of those entities, and which are simply what we believe about 
those entities (sometimes called the project of distinguishing con-
cepts from conceptions, Rey 1983). Facts about conceptual develop-
ment constrain a theory of narrow content.

While the goal of TOOC was to explicate and defend the above 
three theses about conceptual development and sketch how they 
mesh with a dual factor theory of concepts, I also addressed Fodor’s 
(1975, 1980) two related challenges to cognitive science—first, to 
show how learning can possibly result in increased expressive power, 
and to defeat the conclusion that all concepts lexicalized as mono-
morphemic words are innate. The key to answering both of these 
challenges, as well as to understanding conceptual discontinuities in 
general, is to show that, and how, new conceptual primitives can be 
learned. Conceptual primitives are the building blocks of thought, 
the bottom level of decomposition into terms that articulate mental 
propositions and otherwise enter into inference. Conceived of this 
way, there is no logical requirement that conceptual primitives can-
not be learned.

Rey (2014) denies that the project is successful in meeting Fodor’s 
challenges, as do Fodor (2010) and Rips and colleagues (Rips et al. 
2008, 2013). Although I ultimately disagree, I appreciate many of 
the points these critics make along the way. These debates bring 
into focus how the projects of understanding conceptual develop-
ment and understanding the nature of concepts, learning, and the 
human mind are intertwined. In this paper I lay out these debates 
on the interrelated issues of conceptual discontinuity, increases in 
expressive power, and Quinian bootstrapping and begin to sketch 
how they bear on our understanding of the nature of concepts. I 
show how new primitives can be learned, and how this fact bears on 
these debates.

2 The dialectic according to Fodor, Rey and Rips et al.

A kind of logical constructivism is at the heart of Fodor’s and Rey’s 
(and at least implicitly) Rips et al.’s dialectic. These writers, like 
many others, take expressive power to be a function of innate primi-
tives, and what can—in principle if not in fact—be built from them 
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using the resources of the logic available to the learner. Expressive 
power is a logical/semantic notion. So long as the characterization 
of learning mechanisms is exhausted by specifying the set of innate 
primitives and the logical resources through which one builds new 
representations from those primitives, clearly one cannot increase 
expressive power by learning (Fodor 1980).

My response to this picture of learning and conceptual develop-
ment is to argue that learning mechanisms can create new primitives, 
new primitives that cannot be constructed from antecedently exis-
tent primitives by logical combination, and thus increase the expres-
sive power of the conceptual system. In addition, my concern is with 
how new primitives actually come into being; if there are processes 
that yield new primitives, then the question is whether such pro-
cesses actually underlie the emergence of any given representation.

Fodor’s (1975) second challenge to cognitive science is to defeat 
his argument for Mad Dog Nativism, that is, to defeat the argument 
that virtually all of the over 500,000 concepts lexicalized by mono-
morphemic words in the Oxford English Dictionary are innate. Rey 
(2014) lays out Fodor’s argument as follows:

Premise 1: (Hypothesis Confirmation). All learning is hypothesis 
confirmation.

Premise 2: (Logical Construction) One can learn new concepts 
only by creating and confirming hypotheses formulated in 
terms of logical constructions from antecedently available 
primitive concepts.

Premise 3: (Atomism). The concepts underlying mono-morphe-
mic words cannot be analyzed as logical constructions of 
other concepts, primitive or otherwise. (Actually, Fodor says 
‘most’ mono-morphemic concepts cannot be so analyzed, 
but for simplicity I will assume ‘all’ rather than ‘most’).

Conclusion: (Innateness). In order to acquire a new concept 
lexicalized as a mono-morphemic word, one would have to 
confirm hypotheses already containing the concept to be 
learned. Therefore, no such concept can be learned.
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TOOC answers this challenge by giving reasons to deny premises 
1 and 2. My basic strategy has been to provide several case studies 
of transitions between conceptual systems in which the later one ex-
presses concepts that are not logical constructions from the earlier 
one (Carey 1985, 2009; Smith, Carey and Wiser 1985; Wiser and 
Carey 1983). Sometimes this is because of local incommensurabil-
ity, as in case studies of thermal concepts, biological concepts and 
electromagnetic concepts in the history of science, or concepts of 
matter/weight/and density in intuitive physics in childhood and the 
concepts of life and death in childhood). Sometimes it is because of 
developments within mathematic representations that increase ex-
pressive power without necessarily involving local incommensura-
bility (as in case studies of the origins of concepts of integers and 
rational number).2 TOOC then goes on to analyze how Quinian boot-
strapping plays a role in transitions of both types.

The central issue dividing my views from the critics I focus on 
here is discontinuity. These critics deny the very possibility of con-
ceptual discontinuities, as well as offering a positive view of con-
ceptual development in terms of Premises 1 and 2 of Fodor’s ar-
gument which they claim shows how conceptual development is 
possible without discontinuity. Rips and his colleagues suggest that 
claims for discontinuities are incompatible with claims that concepts 
are learned (Rips and Hespos 2011; Rips, Asmuth and Bloomfield 
2013). Again, the key is understanding that, and how, new concep-
tual primitives can be learned. These critics argue that my proposal 
for a learning mechanism that can underlie conceptual discontinu-
ity, Quinian bootstrapping, fails, partly through failing to confront 
a psychologized version of Goodman’s new riddle of induction (Rey 
2014, Rips et al. 2008).

With respect to Rips’ and his colleagues worries that concept 
learning and concept discontinuity are incompatible, let me clarify 
what the debate is not about. The existence of conceptual discontinu-
ity cannot entail that it is impossible for an organism to acquire some 

2 The case study of the construction of the integers is the focus of Rey’s, Rips 
et al.’s, and Fodor’s critiques. I will discuss whether this episode of conceptual 
development truly involves a discontinuity, and an increase of expressive power, 
when I turn to it in Sections 8 and 9 below.
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later representations, given its initial state, except through matura-
tion or magical processes that don’t involve learning (e.g., being hit 
on the head). What is actual is possible. The mechanisms (there are 
many) that underlie the acquisition of our representational reper-
toire, in general, and our conceptual repertoire in particular, if they 
are learning mechanisms, are computational processes. At stake are 
premises 1 and 2 of Fodor’s argument, which all of these critics ex-
plicitly or implicitly endorse. I agree that most of conceptual devel-
opment consists of hypothesis confirmation, where the hypotheses 
are articulated in terms of already available concepts. Discontinuities 
arise in episodes of conceptual development where this is not the 
right model.

With respect to the positive proposal, Mad Dog Nativism re-
quires that virtually all the 500,000 concepts lexicalized in English, 
plus those that will come to be lexicalized in the future, are innate, 
existing in some way in the infant’s mind. This isn’t comforting as a 
positive proposal that obviates the need for concept learning. A prio-
ri, it is highly unlikely that quark and carburetor and fax are innate 
concepts, existing is some kind of hypothesis space available for hy-
pothesis testing. Noting this unlikelihood, Rey (2014) distinguishes 
between manifest concepts (those currently available for hypothesis 
testing and inference) and what he calls ‘possessed’ concepts (those 
that exist in the mind in some way, but are not currently available 
for thought, or those that can be constructed, by logical combination 
from that initial set). Rey defines possessed concepts as those that 
have the potential to be manifest.  Here I use ‘potential’ concepts in-
stead of ‘possessed’ concepts to express this notion. Nobody would 
ever deny that an actual manifest concept had the potential to be the 
output of some developmental process, and in the light of character-
izations of those developmental processes, we can and do explore 
the representational repertoire it can achieve. Exploring the possible 
outputs of the learning mechanisms we investigate is an important 
part of characterizing these mechanisms. Calling the potential out-
put of concept learning mechanisms ‘possessed concepts’ implies 
something stronger, that they exist somehow in the mind prior to 
becoming manifest. Of course, Premises 1 and 2 specify one way we 
can think about this stronger notion ‘possession:’ the innate primi-
tives, along with the combinatorial apparatus of logic and language 
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constitutes a space of alternative hypotheses about which concepts 
apply in particular contexts (e.g., to support the meaning of a word), 
and this space exhausts the potential concepts that are attainable. 
The writers I am criticizing here assume that potential concepts con-
stitute a space of alternatives, laying in wait to become manifest, and 
that manifestation consists in being or being logically constructed from 
these innately possessed primitives. These assumptions follow from 
premises 1 and 2 of Fodor’s argument, the premises I deny.

3 Initial response

My project concerns manifest concepts. To reiterate, manifest con-
cepts are those currently available to for thought, inference, and 
guiding action. The developmental primitives I study are those we 
can find evidence for in the baby’s or animal’s behavior. They must 
be available to support inference and action in order to be diagnosed, 
i.e., they must be manifest (currently available for thought). In what 
follows I argue that concept manifestation is where the debates about 
expressive power, conceptual continuity/discontinuity, and induc-
tion actually play out.

For any representational system we posit, we are committed 
to there being answers to three questions. First, what is the for-
mat of the symbols in the system; second, what determines their 
referents; and third, what is their computational role in thought. 
A worked example in TOOC is the evolutionarily ancient system of 
number representations in which the mental symbols are quantities 
(rates of firing, or size of populations of neurons) that are linear or 
logarithmic functions of the cardinal values of sets, which in turn 
are input into numerical computations such as number comparison, 
addition, subtraction, multiplication, division, ratio calculations, 
probability calculations, and others (see Dehaene 1997, for a book-
length treatment of this system of numerical representations). We 
can only explore such systems with psychological methods that diag-
nose manifest representations. The project of TOOC is understanding 
the representational resources available as the child or adult interacts 
with the world, how these arise and change over development. These 
representations are the ones available for hypothesis testing, as input 
into further learning, and to play a computational role in thought.  
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And it is successive manifest conceptual systems one must analyze to 
establish qualitative changes (i.e., conceptual discontinuities).

In what follows I flesh out these points, explicating how TOOC 
attempts to answer Fodor’s challenges to cognitive science. The is-
sues include a characterization of the nature of learning (Fodor’s 
first premise), the unjustified acceptance of the logical construction 
model as the only model of concept learning (Fodor’s second prem-
ise), the misleading analogy of the totality of concepts ultimately at-
tainable as a hypothesis space, the characterization of how primitives 
arise (both in cases where this is easy and in cases where this is hard), 
and the characterization of constraints of induction (and constraints 
on learning more generally, in cases where learning does not involve 
induction).

Let me begin with the premises in Fodor’s argument that I deny.   
I first comment on why these premises matter and I then show why 
they are wrong.

4 Premise 2. Logical construction

The premise that all concepts must either be innate or buildable by 
combination from innate primitives through innate logical com-
binatorial devices is widely adopted within cognitive science. For 
example, the dominant theoretical project within the field of lexi-
cal development in the 1970s was to attempt to discover the lexi-
cal primitives in terms of which lexical items are defined, and to 
study the intermediate hypotheses children entertain as they con-
struct new concepts from those primitives (see Carey 1982, for a 
review and critique). That is, it was just assumed that definitional 
primitives are innate. There I called this view ‘piece by piece con-
struction’; Margolis and Laurence (2011) call it ‘the building blocks 
model’. Here, I will call it ‘the logical construction model’, in honor 
of Premise 2. In contrast, I argue (Carey 1982, TOOC) that compu-
tational primitives need not be innate. They can be acquired through 
learning processes that do not consist of logical construction from 
innate primitives.

One central issue is atomism. If many of the primitives in adult 
thought (e.g., the concepts expressed by words like ‘dog’ or ‘can-
cer’), cannot be defined in terms of innately manifest concepts, then 
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they either must be innate primitives or it must be possible to learn 
computational primitives through some mechanism that does not 
consist of building new concepts by logical combination of anteced-
ently available ones, and is not exhausted by confirming a hypothesis 
stated in terms of the to be acquired concept. I accept Fodor’s argu-
ments that most lexical concepts are definitional primitives.

Notice that the possibility one can learn new primitives matters 
to the question of expressive power of the system. The expressive 
power of a system of representations is a function of its atomic terms 
and combinatorial apparatus. The logical connectives and operators 
(sentential operators, modals, quantifiers) are not the only primi-
tives that matter to expressive power. If dog cannot be logically con-
structed from primitives, then acquiring the concept dog increases 
expressive power of the system (see Weiskopf 2008). That is, non-
logical primitives figure into semantic/logical expressive possibili-
ties as well as do logical ones. This is one reason that the question 
of whether one learns the concept dog is so central to the debate 
between Fodor and his critics.

5 Premise 1. All learning is hypothesis formulation and testing

To evaluate this proposition we must agree upon what hypothesis 
testing is and what learning is. Bayesian models specify the essence 
of hypothesis testing algorithms. Hypothesis testing requires a space 
of antecedently manifest concepts, each associated with prior prob-
abilities, and each specifying likelihood functions from any possible 
evidence to the probability that it supports any given hypothesis. 
Hypothesis testing then involves choosing among the alternative hy-
potheses on the basis of evidence. Fodor (1975, 2008) claims that all 
learning mechanisms reduce to hypothesis testing, at least implic-
itly. I agree that any learning mechanism that revises representations 
as evidence accumulates (e.g., associative mechanisms that update 
strengths of association, supervised learning algorithms such as con-
nectionist back propagation) do indeed do so. However, as Margo-
lis and Laurence (2011) point out in a reply to Fodor’s 2008 book 
(LOT2), a cursory examination of the variety of attested learning 
mechanisms in the animal kingdom shows that the generalization 
that all learning mechanisms reduce to hypothesis confirmation is 
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wildly off the mark. Rote learning (memorizing a phone number), 
one-trial associational learning (e.g., the Garcia  effect, the creation 
of a food aversion as a result of becoming nauseous some fixed time 
after having eaten a novel food, Garcia et al. 1955), and many other 
types of learning do not involve choosing among multiple hypoth-
eses, confirming one of them, in the light of accumulating evidence. 
And as we shall see, such mechanisms have roles to play in creating 
new conceptual primitives.

Of course, the claim that these are learning mechanisms depends 
upon what one takes learning to be. Learning mechanisms share a 
few essential properties that allow us to recognize clear examples 
when we encounter them. All learning results in representational 
changes in response to representational inputs, where those inputs 
can be seen (by the scientist) to provide evidence relevant to the 
representational change. That is, learning is a computational pro-
cess, requiring representational inputs that can be conceptualized as 
providing relevant information. Sometimes, as in the case of explicit 
or implicit hypothesis testing, the organism itself evaluates the in-
formation in the input with respect to its evidential status (as in all 
forms of Bayesian learning mechanisms). But other times, the learn-
ing mechanism is a domain specific adaptation that responds to in-
formation by simply effecting a representational change of relevance 
to the organism—an example being the learning mechanism that 
underlies the Garcia effect mentioned above. No further evidence is 
evaluated, so there is no hypothesis confirmation.

6 The relatively easy route to new representational primi-
tives: domain specific learning mechanisms

The problem of acquisition arises in the case of any representation, 
conceptual or otherwise, that end up in the manifest repertoire of an 
animal. The literatures of psychology and ethology have described 
hundreds of domain-specific learning mechanisms that simply com-
pute new representations from input, having arisen in the course of 
natural selection to do just that. Most of these representations are 
not conceptual ones, but considering how they are acquired shows 
that the learning mechanisms involved do not always involve hypoth-
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esis testing, thus providing counterexamples to Premise 1. They also 
do not implement logical construction from primitives, and thus 
provide counterexamples to Premise 2. Considering how they work 
illuminates why it’s a mistake to consider potential representations as 
a space of existent representations, ready to be chosen among or built 
from in a process of manifestation.

TOOC’s example of an evolved domain-specific learning mech-
anism is that which underlies Indigo buntings’ learning which part 
of the night sky indicates north. This matters crucially to Indigo 
buntings, for they migrate over 3500 miles each spring (north) and 
fall (south), and they navigate by the stars. Because the earth tilts 
back and forth on its axis, what part of the night sky indicates north 
changes radically on a 30,000 year cycle. Sometime not too far in the 
future, the north star will be Vega, not Polaris. Thus, it is unlikely 
that an innate representation of Polaris as the north star was cre-
ated by natural selection, and indeed, Steven Emlen (1975) discov-
ered the learning mechanism through which Indigo buntings create 
the representation of north that will play such a crucial role in their 
migratory life. The learning device that achieves this analyzes the 
center of rotation of the night sky, and stores the configuration of 
stars that can allow the bird to recognize the position of north from 
a static sighting (as it has to do every time it starts to fly during its 
migrations in the spring and the fall, and as it monitors its course).

This mechanism computes what it is designed to compute—
nothing more, nothing less. It creates an essential representation in 
the computational machinery of Indigo buntings, the specification of 
north in the night sky. Of course, there is a prepared computational 
role for this representation, but the representation of north as speci-
fied by the stars must still be learned, and is an essential primitive 
in the computational machinery underlying Bunting navigation. Do-
main specific learning mechanisms of this sort are often supported 
by dedicated neural machinery that atrophies after its work is done, 
leading to critical periods. This is such a case; if a bird is prevented 
from seeing the night sky as a nestling, no amount of exposure to the 
rotating night sky later in life allows the bird to identify north, and 
the bird perishes.

This example is worth dwelling upon with respect to whether 
representations that can be achieved should be thought of as part of 
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an existing space of hypotheses, and whether the acquisition mecha-
nism involves hypothesis confirmation or logical combination. Until 
the learning episode is completed, there is no manifest representa-
tion that specifies north in the night sky in the bird’s mind. However, 
this learning mechanism can learn any of a very large number of star 
configurations constellations that could indicate north. Indeed, part 
of the evidence that this is the learning mechanism through which 
indigo buntings establish Polaris as the north star are planetarium 
experiments in which the night sky is made to rotate around an arbi-
trarily chosen part of the night sky while the birds are nestlings. The 
birds then use the north star so specified to set their course when 
it’s time to migrate. Thus, there are a plethora of potential north 
stars. And clearly, one can investigate limits on the system (e.g., if 
stars were equally distributed throughout the sky, or if they were too 
densely packed to be resolved, or if the patterns of stars showed large 
scale repetitions, this couldn’t work.) It is only with an actual repre-
sentational/computational characterization of this learning mecha-
nism that the space of potential north stars the Bunting could aquire 
representations of can be explored. Such is always the case.

What about hypothesis testing? I take the essential features of 
hypothesis testing to be two: (1) the learning mechanism must en-
tertain alternatives, and (2) choice among them must be based on 
evidence. The space of potential representations of north that can 
be achieved by Buntings is in no way a hypothesis space. In no way 
does an Indigo Bunting’s acquiring a representation of north consist 
of choosing among possibilities. Calling the possible specifications of 
north a ‘hypothesis space’ is wildly misleading. There is no initial set 
of possibilities, with associated priors, with likelihood functions as-
sociated with them. The animal never considers any possibility other 
than the output of the learning mechanism, and the animal has no 
way of testing whether the specification of north that is the output of 
the learning mechanism is actually north. The bird simply computes 
it, and lives or dies by it.

This case is also worth dwelling upon with respect to the other 
issues on the table. Not only does this case not involve hypothesis 
formulation and testing, it also does not involve building a new rep-
resentation out of primitives by logical combination. And since there 
is no induction involved, the issues of constraints on induction do not 
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arise. Of course, all learning mechanisms must be highly constrained 
to be effective, and characterizing real learning mechanisms allows 
us to understand the constraints under which they operate. This is 
a highly constrained learning mechanism; it considers only one kind 
of information to create a representation that has only one computa-
tional role. It is of no use to the bird in helping the bird learn what 
to eat, who to mate with, or where its nest is in a local environment.

Navigation is not a special case. There have been hundreds of such 
domain specific learning mechanisms detailed in the literatures of 
ethology and psychology, including the imprinting mechanisms that 
allow infants (animals and humans) to identify conspecifics in gen-
eral and their caretakers in particular, mechanisms that allow ani-
mals to learn what food to eat (the Garcia effect just one of dozens 
of domain specific learning mechanisms through which omnivores 
like rats and humans achieve this feat), bird song learning, and so on 
(see Gallistel et al. 1991, for a review of four such domain-specific 
information-expectant learning mechanisms, and Gallistel 1990 for 
a nuanced discussion of the nature of learning).

In sum, the animal literature provides many examples of learning 
mechanisms designed to form new computational primitives, learn-
ing mechanisms that implicate neither logical construction from 
existing primitives (Premise 2), nor hypothesis testing and confir-
mation (Premise 1). One can (and one does) explore the space of 
possible outputs of these mechanisms, for this is one way they can be 
fully characterized and their existence empirically tested, but in no 
way is there a space of representations laying in wait, existing ready 
to be manifested, existing ready to be chosen among.

7 The relatively easy route to new conceptual primitives

The learning mechanism described above acquires a new primitive 
representation, a representation that allows the animal to identify 
north in the night sky, to guide navigation. One might argue it is not 
a new conceptual representation. Its format is surely iconic, and its 
computational role is both highly domain specific and sensori-motor. 
There are, however, learning mechanisms that similarly respond to 
inputs of certain types by simply creating new conceptual primitives, 
primitives that enter into representations with propositional format 
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and participate in the full productivity of language and causal in-
ference. These domain specific concept learning mechanisms need 
not involve hypothesis testing, and do not involve constructing new 
concepts by logical combination. Take the Block (1986)/Macna-
mara (1986)/Margolis (1998) object-kind learning mechanism for 
example.3 This learning mechanism is triggered by encountering a 
novel object (as specified by core cognition of objects) with obviously 
non-arbitrary structure. As Prasada et al. (2002) showed, there are 
several cues to non-arbitrary structure: the object has complex yet 
regular shape (e.g., symmetries, repetition), or there are multiple 
objects that share a complex irregular shape, or the object has func-
tionally relevant parts, or the object recognizably falls under an al-
ready represented superordinate kind (e.g., kind of agent, kind of 
animal, kind of artifact). Core cognition contains perceptual input 
analyzers that are sensitive to cues to each of these properties of indi-
vidual objects. Encountering an individual with one or more of these 
properties triggers establishing a new representational primitive that 
can be glossed same basic level kind as that object. Reference to the 
kind is ensured by representation of the surface properties of the 
individual or individuals that occasioned the new concept (and these 
represented surface properties get enriched and even overturned as 
bases of reference and categorization as more is learned about the 
kind). The content of the new concept depends upon the referent, 
the conceptual role provided by the basic level kind schema (psycho-
logical essentialism), and the conceptual roles provided by any super-
ordinate kind schemas that the individual is taken to fall under (e.g., 
agent, animal, artifact, these in turn being constrained by their 
roles in different systems of core cognition or constructed theories).

Consider encountering a kangaroo for the first time. Such an 
encounter might lead to the formation of a concept kangaroo that 

3 These writers discuss this mechanism as a natural kind learning mechanism 
(e.g., kinds of animals or kinds of plants), but I believe the domain of this mecha-
nism is object kind representations (as opposed to object properties, individual 
objects, or the events in which objects participate). Roughly, kind representations 
are inductively deep, and kinds are construed in accordance with the constraints 
that constitute psychological essentialism in Strevens’ (2000) sense. Artifact 
kinds fall under the domain of this mechanism as well as do natural kinds (Kele-
men and Carey 2007).
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represents animals that are the same basic level kind as the newly 
encountered one. No enumerative induction is needed; the concept 
is what Strevens (2009) calls ‘introjected’ into one’s set of primi-
tives. This concept, falling under psychological essentialism (as it 
is a kind concept), reflects the many constraints on kind concepts. 
That is, the conceptual role same kind as includes assumptions that 
something causes the non-random structure that triggered the for-
mation of the new concept, that these underlying causes are shared 
by all members of the kind (now, in the past, in the future), that 
the surface properties that specify the individual that occasioned the 
new concept may not hold for all members, possibly not even typical 
members. Furthermore, the current guesses about the nature of the 
relevant causal mechanisms relevant to the creation of members of 
this kind, to determining their properties, and to tracing numerical 
identity though time, are taken to be open to revision. That is, there 
is no definition that determines membership in the kind; learners 
treat everything they represent about the kind up for revision (in-
cluding, even that there IS a new kind—the individual we encoun-
tered might have been a mutant raccoon).

This mechanism creates new primitives, not definable in terms 
of other manifest concepts, and thus increases the expressive power 
of the conceptual system. The concept kangaroo is not definable 
in terms of antecedently available primitives using the combinato-
rial machinery of logic. Before creating this concept, one could not 
think thoughts about kangaroos, just as before analyzing the center 
of rotation of the night sky and storing a representation of north so 
specified, an Indigo bunting could not set or guide a course of flight 
toward or away from north. Of course the kind learning mechanism 
ensures that creating new primitives for kinds is easy; one need only 
encounter an individual that one takes to be an individual of a new 
kind, and store a representation of what that individual looks like. 
But this process involves neither induction nor hypothesis testing 
among a huge space of antecedently available innate primitives. The 
concept kangaroo was not laying in wait in a system of representa-
tions available for selection by a Bayesian hypothesis testing mecha-
nism, nor is it constructible by logical combination from anteced-
ently available primitives.

Rey (2014) discusses the Margolis kind learning module, claiming 
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that it falls prey to Goodman’s grue problem, just as Quinian boot-
strapping does (see below). There are two answers to Rey’s questions 
regarding constraints on induction in the Margolis kind learning 
module. First, as detailed above, there need be no induction. But, 
Rey asks, why are not kinds such as objects, animals, agents, Eastern 
grey kangaroos, kangadiles (kangaroos until year 2040, thereafter 
crocodiles), undetached kangaroo parts, or an infinitude of other 
kinds, possible glosses of same kind as that object, rather than the 
kind kangaroo? Why does the learner not form a concept of a par-
ticular individual (Oscar) instead of a kind?

Answering this question simply is an important part of the proj-
ect understanding conceptual development. In the case of dedicated 
concept learning devices such as the object-kind learning device, 
the empirical project is specifying the constraints under which the 
system operates. That there is a dedicated kind concept acquisition 
device is an empirical discovery, and, like all learning mechanisms 
this one embodies strong constraints. It is a discovery that there is 
basic level in kind concepts, and it is a discovery that basic level kinds 
are privileged in kind concept learning (e.g., Rosch et al. 1976). It 
is a discovery that kind representations embody constraints derived 
from causal/functional analyses (see the work on psychological es-
sentialism and the psychology of a causal/explanatory core to kind 
concepts: e.g., Gelman 2003, Keil 1989, Ahn and Kim 2000, St-
revens 2000). And the existence and structure of systems of core 
cognition (in which the concepts agent and object are embedded), 
as well as innately supported systems of causal and functional analy-
sis, are empirical discoveries, as is the fact that these constrain kind 
representations from early infancy (Carey 2009). These constraints 
do not rule out ever entertaining concepts for attended individuals. 
After all, some concepts that are not basic level are themselves in-
nately manifest (e.g., agent) and are drawn upon as important parts 
of the constraints on the kind module. That is, agent is the content 
of a superordinate kind that constrains a newly formed basic level 
kind concept that falls under it. Others, such as subordinate and su-
perordinate kinds, as well as stage and phase sortals like puppy or 
passenger, are routinely manifested after basic level kind representa-
tions are formed (e.g., Hall and Waxman 1993). Still others are ob-
viously entertainable (after all, Goodman and Quine did so, and we 
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all can join in). But these concepts simply are not the output of the 
dedicated basic level kind learning device discussed above. Further-
more, the child can also form a concept of a particular individual, 
even a newly encountered kangaroo. There is a dedicated learning 
mechanism for concepts of individuals, as well as for basic level kinds 
(but that is another story, one that has also been told; e.g., Belanger 
and Hall 2006). Once cognitive science has discovered the constraints 
under which actual learning devices operate, one can explore their 
possible outputs. The constraints posited are empirical proposals, 
falsifiable by demonstrations that they are easily violated. The em-
pirical work strongly supports the existence of the basic level object 
kind learning module.

The basic level kind learning module creates new primitive con-
cepts. Before a person has formed the concepts kangaroo or shovel, 
or concepts of any of infinitely many new kinds, he or she cannot 
think thoughts about the entities that fall under those concepts. This 
learning mechanism thus results in an increase in expressive power.  
However, like the cases of the dedicated learning mechanisms dis-
cussed in the ethology literature (those that yield representations of 
conspecifics, caretakers, the north star), there is an innately speci-
fied conceptual role for kind concepts, in this case given by the ab-
stract concept kind of object and by the schemas of superordinate 
kinds embedded in core cognition and constructed theories that the 
learner assigns the new concepts to. Such already existing schema 
and conceptual roles are always part of the relatively easy route to 
new primitives.

8 The dual factor theory of representations with innate 
conceptual role

Dual factor theory applies straightforwardly to concepts in core cog-
nition (agent, object…), indeed any concept with innate conceptual 
role and innate perceptual input analyzers that support identification 
of entities that fall under it. The innate perceptual input analyzers 
explain how symbols are causally connected to the entities they rep-
resent, and the innate conceptual role specifies the narrow content 
of the concept. In core cognition, and cases like the indigo bunting 
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representations of the azimuth, the innate conceptual role is never 
overturned—the narrow content of the representation of the north 
star that makes it a representation of north simply is the suite of sen-
sori-motor computations supporting navigation it enters into.

The story for the Block/Macnamara/Margolis kind module is a 
little less straightforward. In concepts created by the kind learning 
device there are innate input analyzers that trigger the establishing 
of a kind representation (that identify objects with non-accidental 
structure) and that support the identification of superordinate sche-
ma provided by core cognition (kind of object, kind of agent…). 
These innate input analyzers are part of what provides the wide con-
tent of such concepts, as they trigger forming a representation of 
an entity in the world that is part of the wide content of the newly 
formed concept, as well as providing part of the causal connection 
between this wide content and the newly formed mental symbol. But 
there is no innate, un-overturnable, prepared conceptual role at the 
level of specific kinds. Even the initial superordinate schema the kind 
is subsumed under is revisable. However there is innate conceptual 
role for object kinds in general (i.e., given by psychological essential-
ism), and this specifies what sort of concept is in play and constrains 
its formal properties. This abstract conceptual role specifies part of 
the narrow content for kind concepts. As Block (1986) says, it deter-
mines the nature of the connection between symbols and the world, 
after a symbol is taken to be a symbol for an object kind.

9 The relatively hard route to new conceptual primitives

Quinian Bootstrapping is a learning mechanism that also creates 
new primitives, thus increasing the expressive power of the con-
ceptual system. It differs from those learning mechanisms described 
above in that it did not arise through natural selection to acquire 
representations of a particular sort. Rather, it is one of the learning 
mechanisms that underlie the creation of representational resources 
that are discontinuous with (in the sense of being qualitatively differ-
ent from, being locally incommensurable with, the representations 
of the same domain that were their input). It creates new conceptual 
roles, rather than merely creating new primitives for which there 
were prepared conceptual roles (as in the case in the easy route to 
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new primitives, see above). But once created, these new conceptual 
roles provide constraints on the concepts that will be learned, just as 
in the relatively easy route to new conceptual primitives.

TOOC takes a particular episode along the way to creating a rep-
resentation of integers as a central worked example of conceptual 
discontinuity and of Quinian bootstrapping. I argue that this case in-
volves an increase in expressive power, in that before the bootstrap-
ping episode the child has no manifest concepts for natural num-
bers, and the process of construction of the first representations of 
new primitive concepts, those of a subset of the natural numbers, is 
not exhausted by defining them in terms of primitives antecedently 
available. Again, let me be clear. The increase in expressive power at 
stake here is an increase in the expressive power of manifest concepts 
available to the child. Obviously the total computational machinery 
available to the child has the capacity for this construction (what is 
actual is possible); just as the computational machinery of the child 
has the capacity to create representations of kangaroos in the easy 
route to new primitives.

Expressive power is a semantic/logical issue. Examples of ques-
tions about expressive power relative to number representations in-
clude whether arithmetic can be expressed in the machinery of sen-
tential logic (provably no) and whether arithmetic can be expressed 
in the machinery of quantificational logic plus the principle that 1-1 
correspondence guarantees cardinal equivalence (provably yes, if 
you accept Frege’s proof). But the exploration of expressive power 
with such proofs is relevant to the question of how arithmetic arises 
in development only against empirically supported proposals for what 
the innate numerically relevant primitives are, and what form in-
nate support for logic takes. If arithmetic can be derived from the 
resources of logic alone (with no numerical primitives), this is rel-
evant to the question of the origin of arithmetic in ontogenesis only 
if the relevant logical resources are innate, and in a form that would 
support the relevant construction. If primitives with numerical con-
tent are needed as well (e.g., the principle that 1-1 correspondence 
guarantees cardinal equivalence, or the concepts one and succes-
sor), then one must account for how these arise in development. 
TOOC provides evidence that these numerical concepts are not part 
of the child’s innate endowment, and that they arise only after the 
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bootstrapping episode in which the numeral list representation of 
number is constructed.

TOOC does not consider the form innate support for logic takes, 
and how logical resources arise in development. Indeed, I am acutely 
aware of this lacuna, and of its relevance to our understanding of 
numerical development. These questions have been the focus of re-
search in my lab for the past four years, and will be so for the next 
decade at least. We do not yet have answers concerning the form 
innate support for logic takes. My current guess is that innate logic is 
largely implicit, embodied in computations, and that bootstrapping 
is needed before children create the logical resources needed for the 
mathematical construction of the integers from such primitives. Af-
ter all, these constructions did not arise in mathematics until after 
2000 years of development of formal logic. However, as I say below, 
my picture of the ontogenesis of concepts of integers would be fal-
sified by the discovery of manifest representations with numerical 
content in addition to the three systems for which we already have 
empirical support.

Thus, I acknowledge that Fodor (2010), Leslie et al. (2007), Rey 
(2014), Rips et al. (2008), and others could turn out to be right (not 
that they provide a shred of evidence) that a full characterization 
of the manifest initial state will reveal expressive power sufficient 
to express arithmetic. If so, I would certainly back away from my 
claims about this bootstrapping episode increasing expressive pow-
er, saying that my studies concern how arithmetic capacities actually 
become manifest in ontogenesis. After all, the latter is actually my 
concern. I am quite certain that children do not construct arithmetic 
as Peano/Dedekind or Frege did, and I favor my bootstrapping story 
about what children actually do. But, if numerical or logical primi-
tives are needed that themselves arise as a result of bootstrapping 
processes, then my claims of increases in expressive power stand.

At any rate, the actual process through which representations of 
integers arise is an existence proof of the possibility that bootstrap-
ping can yield new primitives. The case study of the ontogenetic 
origin of integer representations illustrates all three major theses 
in TOOC: the existence of conceptually rich innate representations, 
conceptual discontinuity, and Quinian bootstrapping.
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10 Core cognition of number (rich innate representational 
resources; TOOC, Chapter 44)

Core cognition contains two systems of representation with numeri-
cal content: parallel individuation of small sets of entities in working 
memory models, and analog magnitude representations of number. 
Analog magnitude representations were briefly sketched in section 
3 above. They are analog symbols of approximate cardinal values of 
sets. One signature of this system of number representation is that 
magnitudes are compared to one another on the basis of their ratios, 
and thus discriminability accords with Weber’s law (discriminabil-
ity is better the smaller the absolute value of the quantity) and ex-
hibits scalar variability (the standard deviation of multiple estimates 
of a given quantity is a linear function of the absolute value of that 
quantity.) Analog magnitude representations of number have been 
demonstrated in many animals (rats, pigeons, non-human primates) 
as well as in humans from neonates to adults.

Analog magnitude representations are the output of paradigmatic 
perceptual input analyzers, but the analog magnitude symbols for 
number that are produced are conceptual in the sense of having rich 
central conceptual roles, including the many different arithmetical 
computations they enter into, and the fact that they are bound to 
(quantify over) many types of individuals (objects, events, auditory 
individuals).

A second system of core cognition with numerical content, par-
allel individuation, consists of working memory representations of 
small sets of individuals (three or fewer). The symbols in this system 
represent individuals (e.g., a set of 3 crackers is represented cracker 
cracker cracker, probably with iconic symbols for each cracker). 
Unlike the analog magnitude number representation system, paral-
lel individuation/working memory is not a dedicated number rep-
resentation system, nor are there any symbols that represent cardi-
nal values (or any other quantifiers) in these models; there are only 
symbols for individuals. These models are used to compute total 
volume and area of the individuals, and are input into spatial and 

4 The evidence for central claims in TOOC, along with citations of relevant 
literature, can be found in the chapters flagged throughout the current text.
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causal representations. The numerical content in the system of paral-
lel individuation is entirely implicit; the symbols in the models stand 
in 1-1 correspondence with individuals in the sets modeled. This is 
ensured by computations sensitive to spatiotemporal cues to numeri-
cal identity. The system must determine whether a given individual 
is the same one or a different one from a previously viewed individual 
to determine whether to add another symbol to the model. Further 
implicit numerical content is embodied in some of the conceptual 
roles these models enter into. More than one model can be enter-
tained at any given time, and models can be compared on the basis 
of 1-1 correspondence to establish numerical order and equivalence. 
Importantly, this system of representation implicitly represents one. 
There is no explicit symbol with the content one, but the system up-
dates a model of a set of one when a numerically distinct individual 
is added to it, yielding a model of a set of two (and ditto for sets of 
two and three), and the system similarly updates a model if individu-
als are removed from it. There is a strict upper limit to the num-
ber of individuals that can be held in working memory at any given 
time: 3 for infants. This set-size limit on performance contrasts with 
the ratio limit on performance that characterizes analog magnitude 
systems.

The parallel individuation system is perception-like in many 
ways, especially if the symbols for individuals are indeed iconic, as 
I suspect. Nonetheless the parallel individuation models themselves 
are conceptual in that they are held in a working memory system 
that requires attention and executive function, and enter into many 
further computations in support of rich central inferential processes 
(e.g., reasoning about the actions of agents upon objects, functional 
analyses, causal analyses, as well as quantitative computations).

Systems of core cognition are not the only innate resources rel-
evant to conceptual development. TOOC assumes also early linguistic 
resources, but makes no attempt to specify their exact nature (a topic 
for another book). And, as commented above, the nature of logi-
cal resources available to infants and toddlers is virtually unstudied. 
Particularly relevant for number representations are linguistic repre-
sentations that underlie the meanings of natural language quantifiers. 
Number marking in language (quantifiers, determiners, singular/
plural morphology) requires representations of sets and individuals, 
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and provides explicit linguistic symbols with numerical content ‘a, 
all, some, most, many, few…’. TOOC reviews evidence that before 
age 2 children have mastered some of the basic syntax and semantics 
of natural language quantifiers, and that these linguistic structures 
provide important early constraints on the meanings of verbal nu-
merals, via syntactic bootstrapping.

11 Conceptual discontinuity (TOOC, Chapter 8)

There are two steps to establishing discontinuities in development. 
The first, most important, step is characterizing the nature and con-
tent of symbols in successive systems of representation: Conceptual 
Systems 1 and 2 (CS1 and CS2). These characterizations allow us to 
take the second step: namely, to state precisely how CS2 is qualita-
tively different from CS1. With respect to numerical content, there 
are three CS1s: analog magnitude representations, parallel individu-
ation, and natural language quantification.

The substantive claims in TOOC are that these three systems of 
representation exist, have been characterized correctly, and are the 
only representational systems with numerical content manifest in in-
fancy and the toddler years. TOOC’s picture of number development 
would be falsified if evidence were to be forthcoming for innate nu-
merical representations in addition to those described above, or dif-
ferent from them. Indeed, one aim of my current work on the logical 
resources of infants and toddlers is to search for such evidence.

CS2, the first explicit representational system that represents 
even a finite subset of the positive integers, is the verbal numeral 
list embedded in a count routine. Deployed in accordance with the 
counting principles articulated by Gelman and Gallistel (1978), the 
verbal numerals implicitly implement the successor function, at least 
with respect to the child’s finite count list. For any numeral that 
represents cardinal value n, the next numeral in the list represents 
n + 1.

CS2 is qualitatively different from each of the CS1s because none 
of the CS1s has the capacity to represent any integers. The new prim-
itives are the concepts 1, 2, 3, 4, 5, 6, 7, the concepts that underlie 
the meanings of verbal numerals. Parallel individuation includes no 
summary symbols for number at all, and has an upper limit of 3 or 
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4 on the size of sets it represents. The set-based quantificational ma-
chinery of natural language includes summary symbols for quantity 
(e.g., ‘some, all’) and importantly contains a symbol with content 
that overlaps considerably with that of ‘one’ (namely, the singular 
determiner, ‘a’), but the singular determiner is not embedded within 
a system of arithmetical computations. Also, natural language set-
based quantification has an upper limit on the set sizes that are quan-
tified with respect to exact cardinal values (i.e., trial, along with, 
singular and dual). Analog magnitude representations include sum-
mary symbols for quantity that are embedded within a system of 
arithmetical computations, but they represent only approximate car-
dinal values, and their format is analog. There is no representation of 
exactly 1, and therefore no representation of + 1. Analog magnitude 
representations cannot even resolve the distinction between 10 and 
11 (or any two successive integers beyond its discrimination capac-
ity), and so cannot express the successor function. Thus, none of the 
CS1s can represent 10, let alone 342,689,455.

As required by CS2’s being qualitatively different from each of 
the CS1s that contain symbols with numerical content, it is indeed 
difficult to learn. American middle-class children learn to recite 
the count list and to carry out the count routine in response to the 
probe ‘how many’, shortly after their second birthday. They do not 
learn how counting represents number for another 1 ½ or 2 years. 
Young two-year-olds first assign a cardinal meaning to ‘one’, treating 
other numerals as equivalent plural markers that contrast in meaning 
with ‘one’. Some 7 to 9 months later they assign cardinal meaning 
to ‘two’, but still take all other numerals to mean essentially ‘some’, 
contrasting only with ‘one’ and ‘two’. They then work out the car-
dinal meaning of ‘three’ and then of ‘four’. This protracted period 
of development is called the ‘subset’-knower stage, for children have 
worked out cardinal meanings for only a subset of the numerals in 
their count list.

Many different tasks, which make totally different information 
processing demands on the child, confirm that subset-knowers differ 
qualitatively from children who have worked out how counting rep-
resents number. Subset-knowers cannot create sets of sizes specified 
by their unknown numerals, cannot estimate the cardinal values of 
sets outside their known numeral range, do not know what set-size 
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is reached if 1 individual is added to a set labeled with a numeral out-
side their known numeral range, and so on. Children who succeed 
on one of these tasks succeed on all of them. Furthermore, a child 
diagnosed as a ‘one’-knower on one task is also a ‘one’-knower on all 
of the others, ditto for ‘two’-knowers, ‘three’-knowers and ‘four’-
knowers. The patterns of judgments across all of these tasks suggest 
that parallel individuation and the set-based quantification of natural 
language underlie the numerical meanings subset-knowers construct 
for numeral words.

Also consistent with the claim of discontinuity, studies of non-
verbal number representations in populations of humans who live 
in cultures with no count list (e.g., the Piraha: Gordon 2004; Frank 
et al. 2008; the Munduruku:  Pica et al. 2004), and populations of 
humans in numerate cultures with no access to a count list (e.g., 
homesigners, Spaepen et al. 2011) show no evidence of any number 
representations other than the three CS1s.

In sum, the construction of the numeral list representation is a 
paradigm example of developmental discontinuity. How CS2 tran-
scends CS1 is precisely characterized, and consistent with this analy-
sis, CS2 is difficult to learn and not universal among humans.

12 Greater expressive power?

The above analysis makes precise the senses in which the verbal nu-
meral list (CS2) is qualitatively different from those manifest repre-
sentations with numerical content that precede it: it has a totally dif-
ferent format (verbal numerals embedded in a count routine), none 
of the CS1s with numerical content can express, even implicitly, an 
exact cardinal value over 4. But is the argument that the concepts for 
specific integers are new primitives, undefinable in terms of preexist-
ing concepts using the combinatorial resources available to the child, 
actually correct? This argument, if correct, establishes the claim that 
acquiring the verbal count list representation of integers increases 
expressive power. As I comment in TOOC, this is on its face an odd 
conclusion. Integers are definable, after all, in terms of many differ-
ent possible sets of primitives (e.g., 1 and the successor function, or 
the principle that 1-1 correspondence guarantees numerical equiva-
lence plus the resources of quantificational logic).
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At issue is whether logical combination underlies the transition 
from CS1 (core cognition of number) to CS2 (representations of ver-
bal numerals that implicitly express the successor function). This is 
only possible if the capacity to represent integers is innate (e.g., if 
there is an innate representation of one and successor), or if integers 
are definable, by logical construction, from manifest innate primitives 
using manifest logical processes of conceptual combination. Whether 
acquiring integer representations increases expressive power simply 
is this question. Without a full characterization of the manifest com-
binatorial (logical) apparatus available to the child at the time the in-
tegers are constructed one cannot definitively answer the question of 
whether the child could in principle construct integer representations 
from innate resources, quite apart from the question of whether this 
is how the child does arrive at integer representations. But one can 
explore how the child actually does do so, and, in the remaining pages 
of this paper, I explain why I believe the process is not one of logical 
construction.

It’s true that humans must ultimately be able to formulate con-
cepts of integers using the explicit machinery of logic, enriched by 
whatever numerical concepts are necessary as well (what is actual is 
possible). But it is only after very long historical, and ontogenetic, 
developmental processes that the construction of integers in terms 
of logic or Peano’s axioms is made. We simply do not know whether 
part of this process involved bootstrapping new logical representa-
tions as well as new numerical primitives.

13 A logical construction of the cardinal principle

Piantadosi et al. (2012) demonstrated that children could, in prin-
ciple, construct a count list representation of the integers (at least 
up to ‘ten’) by conceptual combination alone, given the full general 
resources of logic (in the form of logical and set operations—if/ 
then, set difference, plus lambda calculus, including the capacity for 
recursion), knowledge of the structure of the count list (its order),  
and four numerical primitives: the concepts singleton, doubleton, 
tripleton, and quadrupleton (i.e., already manifest concepts of 1, 
2, 3, and 4). Piantadosi et al. appeal to the literature on learning to 
count in support of the claim that these numerical concepts and a 
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representation of the count list are manifest at the time of the induc-
tion of the counting principles, but they merely assume—without 
evidence—that full general resources of lambda calculus and log-
ic are available for the generation of hypotheses about what ‘one’, 
‘two’, ‘three’, ‘four’, ‘five’…through ‘ten’ mean. They assume that 
children learn the meanings of the words ‘one’ through ‘ten’ from 
hearing words in cardinal contexts, through Bayesian enumerative 
induction. Thus, their model satisfies Fodor’s premises 1 and 2.

The model receives input in the form of sets with 1 to 10 items 
paired with the appropriate verbal numeral. It learns a function, in 
the language of lambda calculus, that allows it to answer the ques-
tion ‘how many individuals?’ with the correct numeral. The model’s 
input reflects the relative frequency of verbal numerals in parental 
speech to children (i.e., ‘one’ is vastly more frequent than ‘two’, 
and so on.) Learning is constrained by limiting the combinatorial 
primitives that articulate hypotheses to be evaluated to those de-
tailed above, by a preference for simpler hypotheses (i.e., shorter ex-
pressions in lambda calculus), and by a parameter that assigns a cost 
for recursion. After considering over 11,000 (!) different hypoth-
eses composed from these primitives, the model learns to assign the 
words ‘one’ through ‘four’ to the concepts singleton, doubleton, 
tripleton, and quadrupleton, and also (independently) learns a re-
cursive cardinal principle knower function that assigns the numerals 
‘one’ through ‘ten’ to sets of one through ten individuals. The recur-
sive function tests whether the set in question (S) is a singleton, and 
if so, answers ‘one’.  If not, it removes an element from S, and com-
putes ‘next’ in the count list. It then applies the same singleton probe 
on the resultant set. If the answer is now yes, it outputs the numeral 
achieved by the ‘next’ function (i.e., ‘two’.) If not, it recursively re-
peats this step, stepping up through the count list and down through 
the set until a singleton results from the set difference operation.

The model matches, qualitatively, several details of children’s 
learning to count: children go through ‘one’-, ‘two’-, ‘three’- and 
‘four’- knower stages, in that order, and depending upon the cost 
assigned to recursion, learn the CP-knower function after becom-
ing ‘three’-knowers or ‘four’-knowers. Before the model learns the 
recursive CP-function, it has no way of knowing what numeral to 
apply to sets greater than 4, and in this sense Piantadosi et al. claim 
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a discontinuity in the model’s knowledge of number word meanings. 
Thus, they claim for this model that it puts bootstrapping on a firm 
computational basis, as well as focusing on the logical resources ac-
tually needed for bootstrapping to succeed.

Piantadosi et al. assert that combination is the source of novelty. 
Therefore, in the current discourse, they are denying a genuine dis-
continuity. There is no change in expressive power—the manifest 
primitives (both numerical and logical) clearly can, in combination, 
express the cardinal meanings of ‘one’ through ‘ten’. I will show 
why this model does not implement Quinian bootstrapping after 
I’ve discussed Quinian bootstrapping (see Rips, Asmuth and Bloom-
field 2013, for an illuminating discussion). Here I simply want to 
acknowledge that, of course, depending upon the manifest concepts 
(both numerical and logical) actually available to the child, it cer-
tainly could be possible to learn the meanings of verbal numerals 
by constructing them from antecedently available concepts through 
logical combination.

The question that concerns me is how representations of integers 
actually arise in development. In what follows, I sketch a very differ-
ent picture, one that does not rely on conceptual combination alone, 
and provide reasons to believe that this is the correct picture. My 
goal is to provide reasons to doubt that hypothesis formation by logi-
cal combination from primitives is the only source of new concepts.

14 Quinian bootstrapping

In Quinian bootstrapping episodes, mental symbols are established 
that correspond to newly coined or newly learned explicit symbols. 
The latter are initially placeholders, getting whatever meaning they 
have from their interrelations with other explicit symbols. As is true 
of all word learning, newly learned symbols must necessarily be ini-
tially interpreted in terms of concepts already available. But at the 
onset of a bootstrapping episode, these interpretations are only par-
tial—the learner does not yet have any manifest concepts in terms of 
which he or she can formulate the concepts the symbols will come 
to express.

The bootstrapping process involves aligning the placeholder 
structure with the structure of existent systems of concepts that are 
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manifest in similar contexts. Both structures provide constraints, 
some only implicit and instantiated in the computations defined over 
the representations. These constraints are respected as much as pos-
sible in the course of the modeling activities, which include analogy 
construction. When the bootstrapping is under metaconceptual con-
trol, as is the case when it is being carried out by adult scientists, the 
analogical processes are explicit, and the fruitfulness of the analo-
gies are monitored, and other modeling processes are also deployed, 
such as limiting case analyses, and thought experiments. Inductive 
inference is also often involved in bootstrapping, constrained by the 
actual conceptual structures in the process of being aligned.

In the case of the construction of the numeral list representation 
of the integers, the memorized count list is the placeholder struc-
ture. Its initial meaning is exhausted by the relations among the ex-
ternal symbols: they are stably ordered and applied to a set of indi-
viduals one at a time. ‘One, two, three, four…’ initially has no more 
meaning for the child than ‘a, b, c, d…’, if ‘a, b, c, d…’ were to be 
recited while attending to individuals one at a time.

The details of the subset-knower period suggest that the resourc-
es of parallel individuation, enriched by the machinery of linguistic 
set-based quantification, provide numerical meanings for the first 
few numerals, independently of their role in the memorized count 
routine. Le Corre and I (2007) proposed that the meaning of the 
word ‘one’ is represented by a mental model of a set of a single in-
dividual {i}, along with a procedure that determines that the word 
‘one’ can be applied to any set that can be put in 1-1 correspondence 
with this model. Similarly ‘two’ is mapped onto a long term memory 
model of a set of two individuals {j k}, along with a procedure that 
determines that the word ‘two’ can be applied to any set that can be 
put in 1-1 correspondence with this model. And so on for ‘three’ and 
‘four’. This proposal requires no mental machinery not shown to be 
in the repertoire of infants—parallel individuation plus the capacity 
to compare models on the basis of 1-1 correspondence. But those 
representations are enriched with the long-term memory models 
that have the conceptual role of assigning ‘one’, ‘two’, ‘three’, and 
‘four’, to sets during the subset-knower stage of acquiring meanings 
for verbal numerals. We suggested that enriched parallel individu-
ation might also underlie the set-based quantificational machinery 
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in early number marking, making possible the singular/plural dis-
tinction, and in languages that have them, dual and trial markers. 
The work of the subset-knower period of numeral learning, which 
extends in English-learners between ages 2:0 and 3:6 or so, is the 
creation of the long term memory models and computations for ap-
plying them that constitute the meanings of the first numerals the 
child assigns numerical meaning to.

Once these meanings are in place, and the child has independent-
ly memorized the placeholder count list and the counting routine, 
the bootstrapping proceeds as follows: The child must register the 
identity between the singular, dual, trial, and quadral markers and 
the first four words in the count list. In the course of counting the 
child notes (at least implicitly) the suspicious coincidence that the 
numeral reached when counting a set of ‘three’ is also the word a 
‘three’-knower takes to represent the cardinal value of that set. This 
triggers trying to align these two independent structures. The criti-
cal analogy is between order on the list and order in a series of sets 
related by an additional individual. This analogy supports the induc-
tion that any two successive numerals in the child’s finite count list 
will refer to sets such that the numeral farther in the list picks out a 
set that is 1 greater than that earlier in the list.

In my earliest writings I characterized the induction made by 
4-year-olds as yielding the first representations of integers. Let me be 
clear, as TOOC is, when the child has built the count list representa-
tion of the first 10 or so verbal numerals, the child does not yet have 
general representation of integers. There are many further bootstrap-
ping episodes along the way to a representation of integers, two of 
which are discussed in TOOC—about 6 months after becoming CP-
knowers, children construct a mapping between the count list and 
analog magnitude representations, yielding a richer representation 
of the meanings of verbal numerals (Chapter 9). Shortly thereafter, 
children abstract an explicit concept number, and explicitly induce 
that there is no highest number (Hartnett and Gelman 1998). And 
it is not until late in elementary school or even high school that chil-
dren construct a mathematical understanding of division that allows 
them to reanalyze integers as subset of rational numbers (Chapter 9). 
All of these developments are along the way to richer and richer rep-
resentations of integers. But without the construction of an integer 
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list representation of a finite subset of integers, which provides chil-
dren with new primitive concepts for specific integers beyond four 
(e.g., ‘seven’ representing exactly seven) as well as providing new 
representations of ‘one’ through ‘four’ (in terms of their place in a 
count list, rather than only in terms of enriched parallel individua-
tion) these further bootstrapping episodes never get off the ground.

This proposal illustrates all of the components of bootstrapping 
processes: placeholder structures whose meaning is provided by 
relations among external symbols, partial interpretations in terms 
of available conceptual structures, modeling processes (in this case 
analogy), and an inductive leap.

The greater representational power of the numeral list than that 
of any of the systems of core cognition from which it is built derives 
in part from creating a new representational structure—a count 
list—a new conceptual role—counting, and just using it. Much of 
the developmental process involves no hypothesis testing. Just as 
when the child learns a new telephone number (memorizes an or-
dered list of digits) and learns to use it in a procedure (dial, press but-
tons) that results in a ring and connection to Daddy, here the child 
learns an ordered list and procedure for applying it to individuals as 
one touches them one at a time. This new structure comes to have 
numerical meaning through the alignment of aspects of its structure 
with aspects of the structure of manifest number representations. 
These, in turn, have been built from set-based quantification (which 
gives the child singular, dual, trial, and quadral markers, as well as 
other quantifiers), and the numerical content of parallel individua-
tion (which is largely embodied in the computations carried out over 
sets represented in working memory models with one symbol for 
each individual in the set). The alignment of the count list with these 
manifest meanings is mediated, in part, by the common labels (the 
verbal numerals) in both structures. At the end of the bootstrapping 
episode, the child has created symbols that express information that 
previously existed only as constraints on computations. Numerical 
content does not come from nowhere, but the process does not con-
sist of defining ‘seven’ by conceptual combination of primitives avail-
able to infants. ‘Seven’ is genuinely a new primitive, the meaning of 
which is provided in part by its conceptual role in a new conceptual 
structure.
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With this characterization in hand, one can see why the Pianta-
dosi et al. (2012) model does not implement a Quinian bootstrapping 
process. There are three theoretically important differences between 
Quinian bootstrapping and a model that formulates hypotheses at 
random by explicit conceptual combination from 15 primitives, 
one numeral at a time, and then uses Bayesian induction to evalu-
ate them. First, although, like Piantadosi et al., I assume that chil-
dren have representations with the content singleton, doubleton, 
tripleton, quadrupleton, before the children induces the cardinal 
principles, the numerical content of these representations is car-
ried by enriched parallel individuation, and is merely implicit until 
the child constructs the relevant structures. On this proposal there 
are no manifest summary discrete symbols for these concepts. The 
first explicit symbols are ‘one’, ‘two’, ‘three’ and ‘four’ and their 
meanings are not already existing primitives singleton, doubleton, 
tripleton, quadrupleton. Similarly, the representations that under-
lie the meaning of ‘seven’, after the cardinal principle induction, are 
largely implicit in the procedures of the count routine, not explicitly 
defined in a language of thought. Second, the meanings of numer-
als in the Piantadosi model are learned entirely independently from 
each other. That is, children could, in principle, compose the recur-
sive definition of numerals first, without ever going through ‘one’-
, ‘two’-, ‘three’-, and ‘four’-knower stages. In Piantadosi’s model, 
although the primitive singleton plays a role in the cardinal prin-
ciple function, knowing the meaning of ‘one’ (expressing the innate 
primitive singleton) plays no role in learning the meanings of other 
numerals nor learning the cardinal principle underlying how count-
ing expresses number. In Quinian bootstrapping, the structure cre-
ated by interrelations of the newly learned words, plus their partial 
meanings from initial mappings to prelinguistic thought, play an es-
sential, constitutive role in the learning process. Thirdly, and relat-
edly, the Quinian bootstrapping story takes seriously the question 
on the source of constraints on the learning process. It empirically 
motivates its claims of the exhaustive set of primitives with numeri-
cal content, (the three CS1s), and provides evidence for syntactic 
bootstrapping as an account for how the child breaks into the mean-
ings of the first numerals. As Rips et al. (2013) point out in their 
illuminating discussion of the Piantadosi model, this model does not 
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provide an account for how the hypothesis space is conveniently lim-
ited to just the 15 numerically relevant primitives it randomly gener-
ates hypotheses from. The child has much other numerically relevant 
knowledge at the time of the CP induction. If that knowledge were 
included in the set of primitives, the hypothesis space created by ran-
dom combination from the primitives would explode beyond the al-
ready entirely unrealistic 11,000 hypotheses considered and rejected 
by the model. If numerically irrelevant primitives are included (how 
does the child decide which primitives are relevant?), the problem 
would quickly become entirely intractable.

In sum, Quinian bootstrapping is very different from the Pianta-
dosi logical combination model, but which model provides better in-
sight into how children actually learn how counting represents num-
ber? Two recent animal studies clarify the nature of bootstrapping, 
allowing us to see that it does not involve hypothesis testing over a 
huge space of existing concepts, nor does it involve logical combina-
tion of primitives. These studies also increase the plausibility that 
young children have the computational resources to engage in Quin-
ian bootstrapping.

15 Animal models

In TOOC I speculated that Quinian bootstrapping might well be a 
uniquely human (depending upon external explicit symbols as it 
does), and thus might provide part of the explanation for the unique-
ly human conceptual repertoire. Since then, two studies have con-
vinced me that other animals have the capacity for Quinian boot-
strapping.

15.1 Alex

The first study (Pepperberg and Carey 2012) drew on explicit nu-
merical representations created by Alex, an African grey parrot, 
who had been trained by Irene Pepperberg for over 30 years. He 
had a vocabulary of over 200 words, including object labels, color 
words, relational terms such as ‘same’, and several other types of 
labels. Alex had been taught to produce the words ‘three’ and ‘four’ 
in response to ‘how many x’s’ for sets of 3 and 4 respectively. During 
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this initial training, Alex was also shown mixed sets of objects (e.g., 
4 blue balls, 5 red balls, and 3 yellow balls), and asked, for example, 
‘what color three,’ responding ‘yellow.’ In other words, he was first 
taught to produce and comprehend ‘three’ and ‘four’ as symbols for 
cardinal values 3 and 4. After this training was in place, he was simi-
larly taught to produce and comprehend ‘two’ and ‘five’ as symbols 
for cardinal values 2 and 5. And then ‘one’ and ‘six’ were added to 
his repertoire.

We do not know what non-linguistic numerical representations 
underlay these explicit numeral representations, because we do not 
know the sensitivity of Alex’s analog magnitude representations or 
the set size limit of his parallel individual system. Analog magnitude 
representations themselves could have done so, or both parallel in-
dividuation and analog magnitudes could have been drawn upon. As 
he is a non-linguistic creature, he doesn’t have the resources of set-
based quantification that is part of the language acquisition device 
to draw upon. What the quantificational resources of non-linguistic 
thought are has not been studied, but Alex clearly had the capacity to 
selective attend to small sets and evaluate whether any given set had 
a cardinal value of ‘one’ through ‘six’.

After he had a firm understanding of the cardinal meanings of 
‘one’ through ‘six’, Pepperberg taught him to label plastic tokens of 
Arabic numerals ‘1, 2, 3, 4, 5’ and ‘6’, with the words ‘one’ through 
‘six’ respectively. Arabic numerals were never paired with sets of 
individuals. The only connection between Arabic numerals and set 
sizes was through the common verbal numeral (e.g., ‘two’ for ‘2’ and 
‘two’ for a set of 2 individuals.) He quickly learned to produce and 
comprehend the verbal numeral labels for the Arabic numerals. Then 
with no further training, Pepperberg posed him the following ques-
tion for each pair of Arabic numerals between ‘1’ and ‘6’: ‘Which 
color bigger?’ He was to choose, for example, between a blue ‘3’ and 
a red ‘5’, the plastic Arabic numeral tokens being the same size and 
the correct answer being ‘red’. He succeeded at this task when first 
presented it; it required no further training. Not only had he not 
been given any positive evidence that ‘2’ refers to a cardinal value, 
the only context in which he had answered questions about ‘bigger’ 
and ‘smaller’ previously was in with regards to physical size (i.e., 
‘which color bigger’ of two objects that differed in size).
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Please dwell on this finding. It must be that the common labels 
(e.g., ‘two’) had allowed him to connect a representation of the Ar-
abic digits (e.g.,‘2’) with the cardinal values (e.g., 2), and it must 
be that the intrinsic order in his nonverbal representations of cardi-
nal values allowed him to say which Arabic numeral was bigger or 
smaller than which others. Although Alex had never been taught a 
count list (and had been taught the cardinal meanings of numerals in 
the order ‘three/four’, ‘two/five’ and finally ‘one/six’), by the time 
we began our study Alex could produce and comprehend the words 
‘one’ through ‘six’ as labeling both cardinal values of sets and Arabic 
digits, and could use the intrinsic order among set sizes to order his 
verbal numerals.

We were thus in a position to teach Alex to label Arabic numer-
als ‘7’ and ‘8’, ‘seven’ (pronounced by him ‘sih-none’ and ‘eight’ 
respectively). This training took about a year, and during it he had 
no evidence that ‘7’ or ‘8’ were numerals. He was then taught that 
‘6’ is a smaller number than ‘7’, which in turn is a smaller number 
than ‘8’, by posing the ‘which color number bigger/smaller’ task, 
giving him feedback if he guessed wrong. This was the first evidence 
he had that ‘7’ and ‘8’ are numerals, as are ‘1’ through ‘6’. It took 
only a few hours to train him to answer which color number bigger 
or which color number smaller for each of the pairs: ‘6/7’, ‘6/8’ 
and ‘7/8’. After he had reached criterion on this task he was probed 
which color number bigger and smaller for each pair of numerals ‘1, 
2, 3, 4, 5, 6’ with respect to ‘7’ and ‘8’, and succeeded at this task 
with no further training. Thus, at this point he knew that ‘7’ and ‘8’ 
are verbal numerals, labeled ‘sih-none’ and ‘eight’ respectively, and 
he knew that ‘8’ is a bigger number than ‘1’ through ‘7’ and ‘7’ is a 
bigger number than ‘1’ through ‘6’. Importantly, he had never been 
given any information about which cardinal values ‘sih-none/7’ and 
‘eight/8’ referred to.

The question of this study was whether he would make the (wild-
ly unwarranted) induction that ‘sih-none/7’ expresses cardinal value 
7 and ‘eight/8’ expresses cardinal value 8. He did. The very first 
time he was asked to label a set of seven objects ‘how many treats?’ 
he answered ‘sih-none’ and the first time he was asked to label a set 
of eight objects ‘how many treats?’ he said ‘sih-none’ and immedi-
ately self corrected to ‘eight’. Over a two week period he was asked 
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to label sets of different sizes. These questions were probed by many 
different experimenters, only a few questions a day, intermixed with 
many other questions currently under study, concerning visual illu-
sions and many other things. He performed better than chance pro-
ducing both ‘sih-none’ and ‘eight’ (p < .01 in each case). He was also 
given comprehension trials, (e.g., ‘what color seven’ and ‘what color 
eight’, probed with 3 sets or either 6, 7, 8, 9, or 10 colored blocks), 
and got 11 of 12 correct (p < .01). Thus, Alex had inferred the cardi-
nal meanings of ‘eight’ and ‘seven/sih-none’ from knowledge of the 
cardinal meanings of ‘one’ through ‘six’ and from the fact that six is a 
smaller number than seven and seven is a smaller number than eight.

The Piantadosi model could not possibly apply here. This learn-
ing episode did not involve hypothesis confirmation. Alex never 
got any feedback as to whether his answers were correct. Nor was 
he ever given the pairings between ‘seven (sih-none)’ and sets of 7 
and ‘eight’ and sets of eight that constitute the data for the Pianta-
dosi model. Alex must have made an inductive inference based on 
the meanings of numerals he already had constructed. Given that 
his knowledge of the use of numerals was exhausted by just a few 
procedures they entered into (answering questions about set size and 
numerical order, labeling cardinal values of sets and labeling Arabic 
numerals), and by the mappings he had already made between rep-
resentations of sets, verbal and Arabic numerals, his induction was 
subject to strong constraints. He clearly had not searched through 
a vast unconstrained hypothesis space specified by logical combina-
tion of all 250 or so concepts he had that were lexicalized (or even a 
larger set of conceptual primitives he may manifest). As mentioned, 
this induction was wildly unwarranted; what he had been taught was 
consistent with ‘7’ referring to any set size greater than ‘6’ and with 
‘8’ referring to any set size greater than whatever ‘7’ refers to. But 
in his 30 years of working with numerals, they had been introduced 
as related by +1 (‘three’ vs. ‘four’, then ‘two’ and ‘five’, and then 
‘one’ and ‘six’ added to his repertoire in turn). His induction was not 
mathematically or logically warranted, but it was sensible, given his 
actual experience with numerals. So too is the child’s.

Piantadosi et al. might reply that Alex may have made the leap 
to CP knower, having engaged in the same conceptual combination 
process as hypothesized by their model that children do, during the 
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period of learning where he was taught ‘one’ through ‘six’. In that 
case, the induction he made here was that ‘seven’ and ‘eight’ were 
the next two numerals, in that order, in the relevant list after ‘six’. 
This is also not possible, because Alex lacked an essential set of prim-
itive functions for the Piantadosi model during this earlier period: 
namely, he did not have a count list. He was never taught a list, per 
se, nor never taught to count. Thus he could not form any gener-
alizations carried by the function Next applied to a count list. He 
wasn’t even taught the numerals in numerical order (remember he 
learned first ‘three’ and ‘four’, then ‘two’ and ‘five’ and finally ‘one’ 
and ‘six’). It’s true he explicitly knew his numerals were ordered, 
but that order had to be derived from the intrinsic order of cardinal 
values that were expressed by numerals and could not have been part 
of the source of the mapping between numerals and cardinal values. 
That order was not carried by a count routine and a memorized or-
dered list. Further insight into the process of learning Alex was more 
likely engaged in is provided by a recent study of rhesus macaques.

15.2 Rhesus macaques

Livingstone et al. (2009) taught four juvenile male rhesus macaques 
(1 year old at beginning of training), to choose the larger of two dot 
arrays, or to choose a symbol that came later in an arbitrary list. 
The dot arrays varied between 1 and 21 dots, and the arbitrary list 
of symbols was ‘1, 2, 3, 4, 5, 6, 7, 8, 9, X, Y, W, C, H, U, T, F, K, 
L, N, R’. The monkeys were trained on the dot arrays and on the 
symbol list on alternate days. Training in both cases involved giving 
the monkey a choice between two stimuli (e.g., 2 dots and 7 dots, or 
‘2’ and ‘7’) on a touch screen. When the monkey touched one of the 
arrays, he was rewarded with the number of pulses of juice or water 
that corresponded to his choice. Thus he was always rewarded, but 
got bigger rewards for picking the larger dot array or the symbol 
later in the list. The monkeys learned to pick the stimulus that led 
to the larger reward with both stimuli sets, and were extremely ac-
curate with both types of stimuli, making errors only for closely 
adjacent values.

There were two extremely interesting results that emerged from 
this study. First, with no training, the first time monkeys were given 
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a choice between dot arrays and symbols (e.g., 4 dots and ‘7’), they 
chose the stimulus that would lead to the larger reward. That is, they 
had automatically integrated the two predictors of quantity of liq-
uid—dot arrays and discrete symbols ordered in a list). Clearly this 
integration had to be mediated by the fact that the dot array and dis-
crete list tasks established a common context (same testing chamber, 
same dependent measure of touching one of two stimuli on a screen), 
and the outcomes predicted were from the same scale of quantities of 
liquid. Still, they had integrated them. This is the structural align-
ment process drawn upon in bootstrapping.

Second, when making a choice between dot arrays, the noise in 
choices among large sets (e.g., 19 vs. 21) was greater than that be-
tween smaller sets (e.g., 9 vs. 11 or 3 vs. 5). In fact, the choices 
showed scalar variability, the marker of analog magnitude values (see 
above). But errors in choosing values on the ordered list of discrete 
symbols did not increase as the list got longer. Livingstone et al. 
interpreted this difference as showing that the mapping from dot 
arrays to liquid quantity showed scalar variability, whereas the map-
ping from the list to hedonic value was linear. A more likely inter-
pretation is that the mapping, during learning, reflected recognizing 
the relevance of each type of order (order among set sizes in analog 
magnitude representations of number of dots, and linear order in 
an arbitrary list) and inducing a rule that one should pick the stimu-
lus later in each ordering. It’s analog magnitude representations of 
dots that showed scalar variability, and the representations of the 
linear order in the list that did not. It’s true that some mapping be-
tween each ordering and quantity of liquid was constructed in the 
process, because the two orderings were integrated. But if choosing 
between predicted quantities of liquid underlay each choice, both 
tasks should have shown scalar variability, since quantity of liquid 
is represented with an analog magnitude value. I suggest that the 
structure of an ordered list of symbols is a linear order, supported by 
the discriminability of each symbol from each other, and this order 
directly determined choice once the task was learned. This struc-
ture, after being constructed, was alignable with the intrinsic or-
der of representations of quantity of liquid, and then with the other 
predictor of quantity of liquid (dot arrays). This is structurally the 
same as the alignment between an ordered list and analog magnitude 
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representations of number achieved some 6 months after children 
have become cardinal principle knowers.

Livingstone’s rhesus macaques did not induce the cardinal mean-
ing of a new symbol from its place in a count list, but nonetheless 
they exhibited several components of the extended boostrapping 
process that supports children’s (and Alex’s) doing so. They did build 
a representation of an ordered list (21 elements long!) and align it 
with a representation that was itself intrinsically ordered. Also, they 
automatically aligned two different ordered representations (the list, 
the dot arrays) which were separately aligned to quantity of liquid. 
Clearly, finding the structural correspondence between an ordered 
list and increasing magnitude (whether that magnitude is a number 
or a continuous variable like quantity of liquid) is a natural computa-
tion, at least for primates.

15.3 Conclusions concerning the nature of bootstrapping

As the historical examples discussed in TOOC make clear, bootstrap-
ping episodes are often under metaconceptual control; the scientist 
is consciously engaged in exploring mappings between mathematical 
structures and physical/biological/psychological phenomena. But as 
the above examples make clear, metaconceptually explicit hypoth-
esis testing and modeling procedures are not necessary.

I now turn to the questions of whether the representations achiev-
able by bootstrapping should be thought of as part of a preexisting 
hypothesis space, or otherwise as a process of formulating and con-
firming hypotheses in terms of concepts that are logical construc-
tions from primitives in a preexisting hypothesis space.

Prior to the bootstrapping processes, neither children, nor Alex, 
nor rhesus macaques have any representations for exact cardinal val-
ues outside of the range of parallel individuation. A representation 
of 341,468, or of 10, does not exist in some preexisting hypothesis 
space ready to become manifest. Nor is a representation of 7 con-
structed by conceptual combination of innate primitives. Of course 
the child and Alex and the rhesus macaques, must have the capac-
ity to represent linear order, and to construct a mapping between 
different ordered representations, but this process does not involve 
constructing definitions. Some of the learning processes involved in 
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the extended episode of bootstrapping are certainly not hypothesis 
testing (e.g., memorizing the ordered list of numerals), and some 
are subpersonal (as Shea (2011) put it ‘not explainable by content’; 
see also Strevens’ (2009) proposal that introjection involves subper-
sonal processes). That is, the connection of the ‘three’ in the count 
list with the ‘three’ of enriched parallel individuation is most prob-
ably mediated simply by the shared label and associative machinery, 
just as Alex’s aligning of his representations of verbal numerals, set 
sizes, and Arabic numerals is based first on common labels, which 
then supports ordering them according to the intrinsic order among 
cardinal values within AM and parallel individuation systems of rep-
resentations. Similarly, the rhesus’ aligning of an ordered list of 21 
discrete symbols with set sizes from 1 to 21 depends upon shared as-
sociations with quantities of liquid. Such alignment processes are not 
processes of logical combination (although logical combination is in-
volved in building the placeholder structures). Also, Alex never got 
any feedback regarding the pairing of ‘seven’ and ‘eight’ with cardi-
nal values, so no hypothesis confirmation or Bayesian enumerative 
induction was involved. I conclude that Quinian bootstrapping yields 
new primitives in this case, representations of integers embedded in 
a count list, and is a learning mechanism that does not conform to 
Premises 1 and 2 of Fodor’s argument.

16 Critiques of Quinian bootstrapping

Rey (2014), Fodor (2010), and Rips et al. (2013) deny Quinian 
Bootstrapping is a learning mechanism that can increase expressive 
power by creating new primitives not laying in wait. They deny that 
Quinian bootstrapping actually creates new primitives. It may create 
new concepts, but they are not primitives; they must be constructible 
by logical combination from others. Specific versions of the 
challenges include (1) analogy cannot create new representational 
resources, as analogies require alignable structures antecedently, (2) 
the induction the child makes requires an antecedent appreciation of 
the successor function, and (3) the bootstrapping proposal fails to 
confront Goodman’s grue problem, the problem of constraints on 
induction. As I hope is already clear, I believe all of these challenges 
to be off the mark.
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With respect to the challenge that analogy requires already avail-
able representations to be aligned, I agree. The bootstrapping pro-
cess is an extended one. The new representational resource is not 
created at the moment of the analogy and the induction alone. By 
the time of the induction of the counting principles, the child has 
indeed created the alignable structures needed for the limited induc-
tion he/she makes, just as Alex had. In the case of the child these 
structures are, by hypothesis, the count list and representations of 
the cardinal values of the numerals ‘one’ through ‘four’ supported by 
enriched parallel individuation. The whole process begins with the 
innate numerical resources (the CS1s described above), the enrich-
ment of parallel individuation during the subset-knower stage, and 
the creation of the meaningless placeholder structure. Of course one 
needs both structures to align them. My account of the bootstrap-
ping process specifies the origin of each structure and shows what 
new arises from their alignment.

I also don’t agree with the second critique, that to notice sets 
of two differ from sets of three by a single individual, one must al-
ready represent the successor function. All one must be able to do 
is subtract 2 individuals from 3 individuals, and 1 individuals from 
2 individuals, computations that both parallel individuation and ana-
log magnitude representations support. The successor function, in 
contrast, generates an infinite series of cardinal values, whereas the 
knowledge the child has is initially restricted to the relations among 
sets of one, two, three and four (because of the set size limit on par-
allel individuation and the sensitivity of analog magnitude represen-
tations being limited to 3:4 or 4:5 among young preschoolers). But 
of course, without the capacity to subtract 2 individuals from a set of 
3 individuals, and 1 individual from a set of two individuals, yielding 
a single individual in each case, the child could not make the induc-
tion concerning how his or her short count list works. I do not deny 
this knowledge must be in place for the induction; rather I present 
evidence that it is, including how it is (within the system of enriched 
parallel individuation in the case of children’s learning to count), 
and evidence that precisely that induction separates subset-knowers 
from cardinal principle-knowers. Again, one must consider the for-
mat and computational roles of the actual representations involved. 
The induction the child most probably makes is that when you add 
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an individual to a set for which you would reach numeral N when 
applying the count routine, if you count the resulting set, you will 
reach the next word on the count list. This is not yet the successor 
function, and certainly doesn’t presuppose the successor function.

Turning to the heart of Rey’s and Rips et al.’s criticism: that I 
failed to take on Goodman’s new riddle of induction. Rips et al.’s ex-
tended example of a possible induction consistent with the data chil-
dren have available at the time of inducing the counting principles is 
modular arithmetic. They ask: why do children not hypothesize that 
the counting sequence begins at 1 again after reaching some value 
(e.g., 10, in a mod 10 system). That is, why do they not consider the 
hypothesis that the list cycles, just as ‘Monday, Tuesday, Wednes-
day,…Sunday, Monday…’ does. Rey asks why children do not take 
‘two’ to be a proper name for a set, or any of a myriad other hypoth-
eses. There are, of course, an infinite number of hypotheses consis-
tent with any finite set of data. Human inductive inference is prof-
ligate; so too, apparently, is parrot inductive inference. Accounting 
for the constraints on induction is everybody’s problem. This paper 
has been an extended response to that critique. One place both writ-
ers go wrong is closely related to the view of possessed concepts as 
a vast hypothesis space, laying in wait to become manifest. If this 
were right (think Piantadosi et al.), the issue of constraints on induc-
tion would indeed be trenchant. As I have repeatedly said, any actual 
learning mechanism imposes constraints on what can be learned. 
Thus, part of the project of exploring an actual learning mechanism 
is studying what constraints are imposed by it, including constraints 
on induction. Of course children could learn a modular arithmetic (as 
adults can), but once integrated with analog magnitude representa-
tions, their actual hypotheses about meanings of numerals are con-
strained by the structure of the analog magnitude system (which ex-
tends open-endedly toward higher values), and constraints that the 
same words do not apply to discontinuous regions of it. Induction, in 
this case, is constrained by the only three systems of representations 
with numerical content (parallel individuation, analog magnitude 
representations, and natural language quantification) manifest at the 
time of learning.

One understands the constraints on the inductions made by 
3-year-olds and by Alex by attending to the extremely limited 
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contexts in which these inductions (and most inductions) are actually 
drawn (think Alex and the rhesus macaques, as opposed to the model 
of Piantadosi et al., selecting among over 11,000 hypotheses consis-
tent with the data it has received, where that large hypothesis space 
has been artificially constrained). The induction made during the 
hypothesized bootstrapping episode is constrained by the structures 
being aligned, and their very local conceptual roles. The scientific 
work involved in understanding episodes of Quinian bootstrapping is 
characterizing those structures, showing how they arise, and show-
ing what new is achieved by aligning them.

17 A dual factor theory of bootstrapped concepts

Section 8 argued that dual factor theory straightforwardly applies 
to concepts that are easily acquired, for they are supported by in-
nate conceptual roles that are never overturned (partially determin-
ing narrow content), and by innate perceptual input analyzers that 
guarantee a causal connection between entities in the world and the 
symbols that refer to them (partially determining wide content).

Chapter 13 of TOOC argues that dual factor theory is also need-
ed to understand the nature of concepts that are the output of the 
bootstrapping episodes that underlie the origin of concepts that are 
hard to attain. Space does not permit a full discussion of this issue 
here. Briefly, newly coined concepts are ultimately mapped to an-
tecedent ones that were supported by innate conceptual roles and 
innate input analyzers, and they inherit their wide content from that 
of those antecedent concepts. The placeholder structures in terms of 
which new concepts are introduced consist of interrelations among 
new concepts directly represented in an external language, not yet 
mapped to any already existing concepts that play any role in thought 
or refer to anything in the world. That is, they have only conceptual 
roles to provide their content. Bootstrapping proceeds by mapping 
these newly coined symbols to related symbols that are already inter-
preted. This process is often mediated by shared labels, but requires 
changes within the antecedently represented concepts, changes ef-
fected by aligning the two structures though modeling processes 
such as analogical mapping.

In TOOC (Chapter 13) I considered whether any of the conceptual 
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roles that play such an important role in this process determine the 
content of the final representations, given that they are all up for 
revision (and indeed, are revised in every episode of bootstrapping). 
The issue is that conceptual role has many roles to play in a full theo-
ry of concepts that do not specify narrow content, such as underlying 
inferences and being part of the sustaining mechanisms that connect 
concepts to their referents. The challenge to a dual factor theory is 
specifying which aspects of conceptual role, if any, actually deter-
mine content.

The proposal I made in TOOC was that the conceptual role that 
exhausts the meaning of the terms introduced in newly coined place-
holder structures, and that constrains the structural alignment pro-
cess through which these terms come to have wide content, is part 
of narrow content. But how can this be so, given that the relations 
expressed in placeholder structures are not analytic, but rather fall 
under the assumptions of psychological essentialism, and thus are 
assumed to be (and are) up for revision? The solution, I suggested, is 
to take seriously the relation between ancestor and descendant con-
cepts in cases of true conceptual change (as opposed to cases of belief 
revision). Narrow content is that part of conceptual role that was 
part of the initial placeholder structure, or the aspects of conceptual 
role that led to changes at the level of individual concepts (differenti-
ations, coalescences, changes in conceptual core) in the descendants 
of that initial placeholder structure.

18 Conclusions

As has long been recognized, a theory of concepts must include an 
account, at least in principle, of how it is possible that they are ac-
quired, both over historical time and in ontogenesis. This problem 
has largely been ignored in the psychological literature on concepts 
within cognitive psychology. I have argued here that taking this prob-
lem seriously constrains our understanding of what concepts are. 
There are two broad routes to concept acquisition: the easy route 
that underlies episodes of fast mapping and the hard route that un-
derlies conceptual discontinuities, and requires bootstrapping. The 
lesson that emerges from considering the two cases side by side is the 
crucial contribution of conceptual role in determining content. In 
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the easy cases, there are innate conceptual roles for the new concepts 
to play (north in the night sky has an innate role to play in Bunting 
navigation; kind concepts are supported by an innate schema within 
the constraints of psychological essentialism). The hard cases differ 
from these in that there is no innate conceptual role for the new 
primitives, the new inferential role and the primitives that fill those 
roles must be co-constructed. The bootstrapping process includes 
constructing new placeholder structures whose symbols get mean-
ings entirely in terms of their interrelations with each other, and this 
conceptual role then comes to have wide content through modeling 
processes that connect it to antecedently available representations. 
It is not a hard sell for psychologists to consider that inferential role 
must have a role to play in individuating concepts and specifying 
their content. Considerations of acquisition show both how deeply 
this is so, and provide suggestive evidence concerning the questions 
of which aspects of conceptual role might be content determining.

19 New directions

There is much work do be done, both on what I am calling the easy 
cases of concept acquisition and on what I am calling the hard cas-
es. But here I want to draw attention to an urgent problem in this 
discourse that is virtually unstudied—specifying what form innate 
support for logic takes. We cannot evaluate Premise 2 of Fodor’s 
argument without knowing this; we cannot know whether later de-
veloping concepts can be built from earlier available primitives by 
straightforward conceptual combination without this. One of the 
deepest issues in cognitive science is at stake. Many hold (e.g., Ber-
mudez 2007; Penn et al. 2008) that non-human animals do not have 
a logic-like language of thought formulated over language-like repre-
sentations of propositions, and many have suggested that these arise 
in development only upon learning natural language. Others (e.g., 
Braine and O’Brien 1998; Crain and Khlentzos 2010; Fodor 1975) 
hold that it is obvious that non-human animals have such represen-
tational capacities, and that babies could not learn language without 
it. Actually, it is not obvious one way or the other. It is possible that 
the capacity for logic-like conceptual combination may be part of the 
evolved capacity for human language and that it emerges in ontogen-



Susan Carey160

esis only in the course of language acquisition. More radically, it is 
possible that logical content is initially embodied only in computa-
tions defined on explicit representations, like the numerical content 
of parallel individuation, and that bootstrapping is needed to yield 
meanings of language-like symbols for logical connectives.

TOOC speculated that the format of representation of all core cog-
nition systems is iconic, and provided evidence for this in the case 
of core cognition of number (both AM and PI representations). But 
systems of core cognition do not exhaust the innate representational 
repertoire. At the very least there are perceptual representations as 
well, and perhaps abstract representations of relations (e.g., cause, 
same). It is less plausible that the format of these latter types of repre-
sentations is iconic. Furthermore, it is completely unstudied wheth-
er infants have mental representations in their language of thought 
with the content of logical connectives, such as and, or, or not, but 
if there are, it is certain that their format of representation is not 
iconic. There is simply no research on logical symbols and reasoning 
schema in infancy using the productive methods of modern studies 
of infant cognition. There should be.
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